
Rigorous Evaluation

Analysis and Reporting

Structure is from A Practical Guide to Usability Testing by J. Dumas, J. Redish

Results from Usability Tests

- Quantitative data:
 - Performance data times, error rates, etc.
 - Subjective ratings, from post test surveys
- Qualitative data:
 - Participant comments from notes, surveys, etc.
 - Test team observations, notes, logs
 - Background data from user profiles, pretest surveys and questionnaires

Work Role: User Class	UX Goal	UX Measure	Measuring Instrument	UX Metric	Baseline Level	Target Level	Observed Results	Meet Target?
Ticket buyer: Casual new user, for occasional personal use	Walk-up ease of use	Initial user performance	BT1: Buy special event ticket	Average time on task	3 min as measured at the kiosk	2.5 min	3.5 min	No
Ticket buyer: Casual new user, for occasional personal use	Walk-up ease of use for new user	Initial user performance	BT2: Buy movie ticket	Average number of errors	<1	<1	2	No
Ticket buyer: Casual new user, for occasional personal use	Initial customer satisfaction	First impression	Questions Q1–Q10 in questionnaire XYZ	Average rating across users and across questions	7.5/10	8/10	7.5	No

Summarize and Analyze Test Data

- Qualitative data ...
 - For survey multiple choice questions, count responses or average (if large groups)
 - For survey open-questions/comments, interviews, and observations ...
 - Identify critical comments
 - Group into meaningful categories (+ or for a particular task/ screen)
- Quantitative data ...
 - Tabulate
 - Use statistics for analysis when appropriate

Look for Data Trends/ Surprises

- Examine the quantitative data ...
 - Trends or patterns in task completion, error rates, etc.
 - Identify extremes, outliers
- Outliers what can they tell us, ignore at your peril
 - Non-usability anomaly such as technical problem?
 - Difficulties unique to one participant?
 - Unexpected usage patterns?
- Correlate with qualitative data such as written comments – why?
- If appropriate compare old versus new program versions different user groups

Examining the Data for Problems

- Have you achieved the usability goals
 - learnable, memorable, efficient, understandable, satisfying …?
- Unanticipated usability problems?
 Usability concerns that are not addressed in the design
- Have the quantitative criteria that you have set been met or exceeded?
- Was the expected emotional impact observed?

Task and Error Analysis

- What tasks did users have the most problems with (usability goals not met)?
- Conduct error analysis
 - Categorize errors/task by type
 - Requirement or design defect (or bug)
 - % of participants performing successfully within the benchmark time
 - % of participants performing successfully regardless of time (with or without assistance)
 - If low then BIG problems

Prioritize Problems

- Criticality = Severity + Probability
- Severity
 - 4: Unusable not able/want to use that part of product due to design/implementation
 - 3: Severe severely limited in ability to use product (hard to workaround)
 - 2: Moderate can use product in most cases, with moderate workaround
 - 1: Irritant intermittent issue with easy workaround; cosmetic
- Factor in scope

 local to a task (e.g., on screen) versus global to the application (e.g., main menu)

Rubin, Jeffrey, and Chisnell, Dana. Handbook of Usability Testing : How to Plan, Design, and Conduct Effective Tests (2). Hoboken, US: Wiley, 2008. ProQuest ebrary.

Prioritize Problems (cont.)

• Probability of occurrence

Frequency ranking	Estimated frequency of occurrence
4	Will occur ≥90% of the time the product is used
3	Will occur 51-89% of the time
2	Will occur 11–50% of the time
1	Will occur ≤10% of the time

• When done – sort by Criticality (priority)

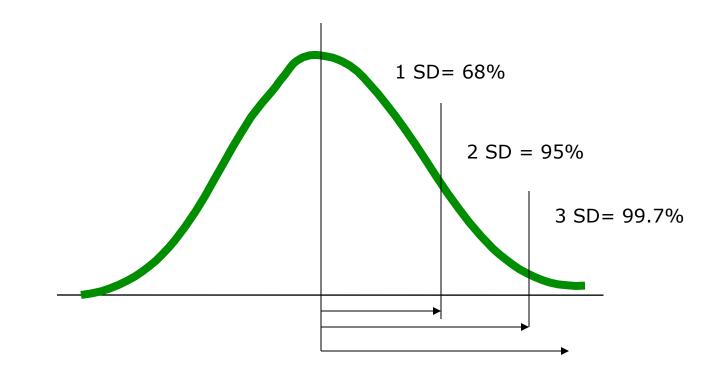
Rubin, Jeffrey, and Chisnell, Dana. Handbook of Usability Testing : How to Plan, Design, and Conduct Effective Tests (2). Hoboken, US: Wiley, 2008.

Statistical Analysis

- Summarize quantitative data to help discover patterns of performance and preference, and detect usability problems
- Descriptive and inferential techniques

Descriptive Statistics

- Describe the properties of a specific data set
- Measures of central tendency (single variable)
 - Frequency distribution (e.g., of errors)
 - Mean (average), median (middle value), mode (most frequent value in a set)
- Measures of spread (single variable)
 - Amount of variance from the mean, standard deviation
- Relationships between pairs of variables
 - Scatterplot
 - Correlation
- Sufficient to make meaningful recommendations for most tests



Using Descriptive Statistics to Summarize Performance Data E.g., Task Completion Times

- Mean time to complete rough estimate of group as a whole
 - Compare with original benchmark: is it skewed above/below?
- Median time to complete use if data very skewed
- Range (largest value smallest value) spread of data
 - If small spread then mean is representative of the group
 - A good measure
- Standard Deviation (SD) is the square root of the variance
 - How much variation or "dispersion" is there from the average (mean or expected value) in a normal distribution
 - If small, then performance is similar, if large, then more analysis is needed
 - Influence by outliers possible, so rerun without them as well

Normal Curve and Standard Deviation

Summarizing Performance Data (Cont.)

- Interquartile range (IQR) another measure of statistical spread
 - Find the three data points (quartiles) that divide the data set into four equal parts, where each part has one quarter of the data
 - Difference between the upper (Q₃) and lower (Q₁) quartile points is the IQR
 - IQR = Q3 Q1 ("middle fifty")
 - Find outliers below Q₁ 1.5(IQR) or above Q₃ + 1.5(IQR)

i	x[i]	Quartile
1	102	
2	104	
3	105	Q ₁
4	107	
5	108	
6	109	Q ₂ (median)
7	110	
8	112	
9	115	Q ₃
10	116	
11	118	

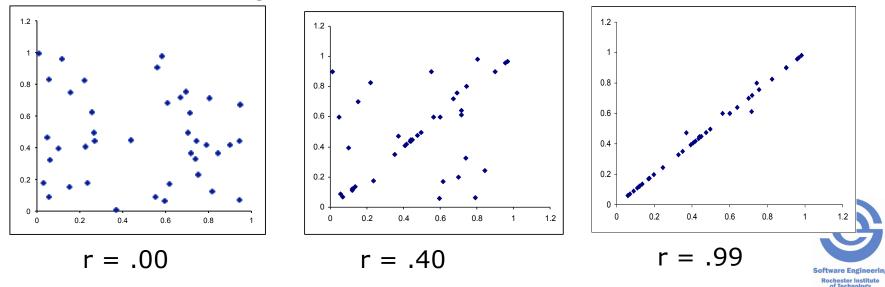
Correlation


Allows exploration of the strength of the linear relationship between two continuous variables
You get two pieces of information; direction and strength of the relationship

•Direction

- +, as one variable increases so does the other
- -, as one variable increases, the other variable decreases

Strength


• Small: .01 to .29	01 to29
• Medium: .3 to .49	3 to49
• Large: .5 to 1	5 to -1

"It's a non-linear pattern with outliers....but for some reason I'm very happy with the data."

Scatterplots

- Need to visually examine the data points
- Scatterplot plot (X,Y) data point coordinates on a Cartesian diagram

Errors in Testing

- Sample is not big enough
- The sample is biased
 - You have failed to notice and compensate for factors that can bias the results
- Sloppy measurement of data.
- Outliers were left in when they should have been removed
 - Is an outlier a fluke or a sign of something more serious in the context of a larger data set?

Data Analysis Activity

- See the Excel spreadsheet "Sample Usability Data File" under "Assignments and In-Class Activities" in myCourses
- Follow the directions
- Submit to the Activity dropbox "Data Analysis"

Supplemental Information Inferential Statistics

Inferential Statistics

- Infer some property or general pattern about a larger data set by studying a *statistically significant sample* (large enough to obtain repeatable results)
 - In expectation the results will generalize to the larger group
 - Analyze data subject to random variation as a sample from a larger data set
- Techniques:
 - Estimation of descriptive parameters
 - Testing of statistical hypotheses
- Can be complex to use, controversial
 - Keep Inferential Statistics Simple (KISS 2.0)

Statistical Hypothesis Testing

- A method for making decisions about statistical validity of observable results as applied to the broader population
- Based on data samples from experiments or observations
- Statistical hypothesis (1) a statement about the value of a population parameter (e.g., mean) or (2) a statement about the kind of probability distribution that a certain variable obeys

Establish a Null Hypothesis (H₀)

- The null hypothesis H₀ is a simple hypothesis in contradiction to what you would like to prove about a data population
- The alternative hypothesis H₁ is the opposite
 - what you would like to prove
- For example: I believe the mean age of this class is greater than or equal to 20.7
 - H_0 the mean age is < 20.7
 - H_1 the mean age is ≥ 20.7

Does the Statistical Hypothesis Match Reality?

	STATE OF	NATURE
DECISION	H ₀ is true	H₀_is false
Accept H ₀ :	satisfactory	Type II error
Reject H ₀ :	Type I error	satisfactory

- Two types of errors in deciding whether a hypothesis is true or false
 - Note: a decision about what you believe to be true or false about the hypothesis, not a proof
- Type I error is considered more serious

Null Hypothesis

- Null hypothesis (H₀) hypothesis stated in such a way that a Type I error occurs if you believe the hypothesis is false and it is true
- In any test of H₀ based on sample observations open to random variation, there is a probability of a Type I error
 - P(Type I Error) = α
 - Called the "significance level"
- Essential idea limit, to the small value of α , the likelihood of incorrectly reaching the decision to reject H₀ when it is true
 - As a result of experimental error or randomness

How It Works

- Establish H_0 (and H_1)
- Establish a relevant test statistic and distribution for the sample (e.g., mean, normal distribution)
- Establish the maximum acceptable probability of a Type I error the significance level α (0.05)
- Describe an experiment in terms of ...
 - Set of possible values for the test statistic
 - Distribute the test statistic into values for which H₀ is rejected (critical region) or not
 - Threshold probability of the critical region is α
- Run the experiment to collect data and compute the test statistic p
- If $\mathbf{p} > \alpha$ reject \mathbf{H}_0

Simple Example

- I believe the mean age of this class is ≥ 20.7
- Establish H₀
 - The mean age in this class is less than 20.7 years
- Establish a relevant test statistic and distribution for the sample
 - Mean, assume normal distribution from 17 to 26 of all undergraduate SE students
- Establish the significance level $\boldsymbol{\alpha}$
 - 0.05 by convention
- Distribute the test statistic into values for which H₀ is rejected (critical region)
 - Let's say 19 and above
 - Run the test with a sample size of 10, compute the mean μ and the probability p of that mean value occurring from a sample size of 10 in the general population

of Technold

• If p> α , reject H₀